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ABSTRACT

The asymptotic approximation method previously applied to the case
of compressional wave propagation in an inhomogeneous fluid medium
is carried through for the case of a solid medium. Although the method
is based on the assumption of continuous variation of the elastic proper-
ties, a comparison of the dispersion curves computed by the approximate
theory with those computed by the exact theory for a medium made up of
two or three homogeneous layers indicates that the approximate theory
is fairly accurate for the normal modes of higher order than the fifth or
sixth, The approximation fails for the modes of lowest order, which are
those of greatest seismological interest, but even in this case the
asymptotic theory, when used in conjunction with the limiting forms of

the exact theory, has some value for the purpose of rough estimation.
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ASYMPTOTIC APPROXIMATION FOR THE
ELASTIC NORMAL MODES IN A STRATIFIED SOLID MEDIUM

1. INTRODUCTION

In a previous paper,! expressions were derived for the dispersion of the normal modes of elastic waves
in a semi-infinite solid medium made up of a finite number of homogeneous parallel layers of different
densities and elastic constants. The numerical computation of the phase velocity vs frequency curves
from these expressions is extremely laborious if there are more than two layers and almost prohibitively
so if there are more than three. In discussing the propagation of seismic surface waves in the earth’s
crustal layers, particularly in the continents, it may become necessary to employ more complex models than
those that have been treated previously. It is therefore of interest to consider the applicability to seismic
wave propagation problems of the asymptotic approximation methods that have been applied to fluid media
with continuously varying elastic paramaters.?+?

There is one serious limitation that should be pointed out at the outset. The approximations that we

shall use are based on the assumption that the properties of the medium are slowly varying functions of
one coordinate in the sense that the relative variation within a wavelength is small. For the frequencies
of greatest seismological interest (periods from about 0.5 second to something over a minute), the assump-

tion is certainly not correct for the earth’s crustal layers. Nevertheless it may be of some interest to carry

the analysis through for the case of a medium of slowly varying properties and then compare the resulting

normal-mode dispersion curves with those obtained from the exact theory for discrete homogeneous layers.

2. SEPARATION OF THE EQUATIONS OF MOTION IN CYLINDRICAL COORDINATES

In cylindrical coordinates the equations of motion are

pd%u /Au? = 3T, /or + (T, = Tgo/r + 3T ,/r36 + 3T, /3s M
pd2u /% = 3T, /3r + T, /r + BT, ,/r36 + 3T, /3:z @)
/J'a’nao/3cz = 9T, ,/0r + 2T o/r + 3T, 5/r36 + 3T, ,/03z2, (3)

Manuscript received for publication 13 Feb. 1958.
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where the components of the stress tensor are given by

T, =A8 + 2udu, /3r 4)
T" = NS+ 2u au'/az (5
Té—e = A& + 2p(3u9/r 96 + wu,/r) (6)
T, = ,u.(au,/ar + 3u'/az) (7)
T, = p(aua/ar = ug/r du,/rd0) (8)
T, = ;J.('aue/az + 3‘u'/r35) 9
and
8 = Qu /3dr t u /r + Buy/rdf + du /dz . (10)

The Lamé elastic moduli A and x and the density o are assumed to be function of the axial cvoruti ute
z, only. Following Sezawa’s® solution of these equations for the case of a homogeneous medium, we start

with particular periodic solutions in the form

u, = w™? exp (iwt) cos n 6 [Fl (2)dJ, (kr)/dr ~ F g (2)n ], (kr)/r ] a1
4, = @™ exp(iwt) cosn 6F, (z) ], (k) (12)
vy < @™ exp (iwt) sin n6 [F 3.(;,) dl, (kr)/dr - F \ @l r)r ) {13)

where n may be any positive integer (including zero), w is the angular frequency, k is an arbitrary num-
ber which we shall eventually use as a parameter of integration, and F,, F,, and F, are functions of z
to be determined. Since we shall follow Lamb’s® method of developing a point source solution by integra-
tion of particular solutions of the above form, the Bessel functions of the first kind J (kr), rather than a
linear combination of functions of the first and second kinds, are the appropriate radial functions in this
case. An independent set of particular solutions may be obtained by substituting sin 6 for cos n 6 in
Egs. (11) and (12) and = cos n 6 for sin n 6 in Eq. (13). However, since we shall not be concerned with
the problem of representing particular types of point sources by summation over the azimuthal characteristic

number, n, the set given by Eqs. (11), (12), and (13) is sufficiently general for our purpose.
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By substituting these expressions for the displacements in the equations of motion, we obtain the follow-

ing equations for the functions F , F,, and F,
pFy+ pF + [pw? = W+2u)B)F + AN+ W) F, + uF, =0 (9
(N+2p)F, + (X+ 24) F, + [pw? - pk2]F, - (A +p) &2 F - AR F = o (5)
wF, + @F, + [pw? - pk21F, = 0 (16)
where the dot denotes differentiation with respect to z. If A, 1, and o were constants, the substitutions

F,=2,-Z, an

F

2 k? z, -2 (18)

1

satisfy Eqs. (14) and (15) if the functions Z v and Z 2 satisfy the equations

Z, + [pwl/(A+ 2p) - K12, =0 19)

Z, + [pw/p- 412, =0. (20)

In this case the terms in Z )» fepresent waves traveling with the compressional wave velocity, a =
[(A+ 2u)/p)1/2, andthe terms in Z, and F (which satisfies the same differential equation as Z,)
represent waves traveling with the rotational wave velocity, 8 = [u /p] 1/2,

Equations (17) through (20) are still approximately valid when A, 12, and p are functions of z, pro-
vided 1 /uk, 5\/ Nk, and ,5/pk are sufficiently small to be ignored. This means essentially that the
relative variations of the properties of the medium within 8 wavelength must be very small. When this is not
the case, it will not, in general, be possible to make a clear distinction between the two types of waves.

In other words, in an inhomogeneous medium there will be a coupling between compressional and rotational
waves at every point of the medium for which 1 /uk, etc., are not negligible.

Meking the substitution of Eqs. (17) and (18) and dropping the common time factor, exp (iwx), the ele-

mentary displacements become
u, = w2 cos nOUZ, - Z)d ], )/dr = F n ], (k)/r] (21)

u, = w2 cos n[K2Z, ~Z]I (k) (22)

g = w2 sin n 8 [F,d], (k)/dr= Z4 - Z)n], G)fr] (23)
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and using Eqs. (19) and (20), the stress components across a horizontal plane become

T

5z

w2 cos n 0 [(pw? - 2,L&/¢’)Zl + 2 uk? 22] (24)

T

rx

w32 cos n 6 ({Quk? ~pa®)Z, - 2u2}d], (k)dr-pF n] ()] (25)

T,, = w?sinn0(uF, dJ, (k)jdr - {@pk? - po?)Z, - 2uZinl (fe) . (26)

At large values of kr,/ (kr)/r becomes small compared to /_ (kr) and d J,, (kr)/dr, so that the terms
in F, contribute appreciably only to 4, and the terms in Z, and Z, onlyto 4, and u . Thus at

large distances the F_ terms represent horizontally polarized transverse (SH) waves, the Z, terms

3
represent transverse waves polarized in a vertical plane (SV), and the Z, terms represent longitudinal

(P) waves.
3. BOUNDARY CONDITIONS

Solutions representing a point source at r = 0, z =k, may be obtained by requiring the stress com-
ponents to be continuous across the plane z = A, but allowing u,, u, and u, to have discontinuities
such that, when the elementary solutions are integrated with respect to k over the interval zero to infinity,
the discontinuities disappear except for a singularity at the source. The other boundary conditions are that

T

the functions Z,, Z, and F; must be of such a form as to represent, with the time factor exp (iwt), only

the stress components T T PR shall venish at the free surface (z = 1)) and at large values of z

z2’ " rs’

waves propagated or exponentially damped in the +: direction.
Introducing the abbreviation ¥ (z) = 2 uk3/pw? = 2 (Bk/w)3, the stress boundary conditions at

the free surface and at the source are

[y =112, -~ y©@Z,©@ = 0 (27)
[70 ~1] Z,( - YO Z, (/42 = 0 (28)
F{0 =0 @9)
[y#) 1182, - YO Z, = 0 (30)
[y - 1182, ~ y®YAZ /K = 0 @1
AF, =0 (32)

where A signifies the discontinuity in eny quantity at s = A.
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Let Mu(k, z) and N (k,z) be two linearly independent soluticr  of Eq. (19) which, with exp (iwe),
represent waves propagating in the negative and positive z directions respectively for large values of z.

Let Mp (k,z) and Nﬁ(k,z) be the tvo comresponding solutions of Eq. (20). The boundary conditions at the

free surface, the source, and at infinity may then be satisfied by solutions of the form

0<:<h Z =AM + BN,
Z, = CMy + DN,
Fy = EMg + FN,
h<z Z, = GN,
Z, = HN,
Fy = INg .

(33)

(34)

(35)

(36)

37)

(38)

By using Eqs. (30) and (31) and integrating with respect to k from zero to infinity, the discontinuities

in the displacements at z = h become

Aur = -~ w2 cos nb f [{AZ,/')'(I&)}JI' (kr)/dr + AF‘nI' (kr)/r 1dk
[
Au' = w"2 cos u9f{AZz /’y(ll)}],I (kr) k2 dk
0

Auy, = w2 ainn6 [[AF,dI, Ga)jdr + {AZ/yW)In], (e)/e)dk .
. 0

I we set

AZ, =-wly () k1P,

AZ

, = @ y(W kIS

AF

3 wﬂh"*lQ.

(39

(40)

41)

(42)

43)

(44)
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where P., S ot Q. are constants, the discontinuities become

> g
&
1

cos n 0 [P' d/dr)y = nQ,/r] f]n (kr) k**1 dk
0

@
cos n6S, [ J (kr)k"*!dk
0

> g
"
i

Au, =sinn6[Q.@/dr) = nP /r) [] (k) k**Vdk .
0

@
The integral in these expressions, considered as the limit of [ ™% I, Gr) & *1 4k as a approaches

2ero, vanishes everywhere except at r = 0), where it has an essential singularity, thus satisfying the

point source requirements.
From Egs. (33) to (38) we have

(G-B)N () - AM,(B)

rZ, =
AZ, = H-D)Ny®) - Clg(h
AF, =

) (I-F)Np(h)-EMp(h) .

(45)
(46)

47)

By using Eqs. (27) through (32) with (42) through (47), the coefficients in Zl, VA 2 and F s may be deter-

mined as follows

Tt g agmg e, M N . Xwews W

-~
1}

WY B (S, {y () - 1IN + P, y(h) Ny ()]

C = -@kIb U [P {y W -1IN; () + kS, YR Ng(h)]
B =k 1k (P WK + S X (K]
D=~ fTR) [P, YK) + S, Z(K)]

Ze 21841 ;-1 A
E wt k* bﬂQ.Nﬂ(h)

F = okt 410 Ng0) Ngh)/N g (@
G = B + k™16 [P y® M, () + S, {y (W) =1} M, h)]
H =D - k™1 P {yW -1} M) + kS, 7 () My (b))

N AWK cemee  vm i e~ - —

(48)

(49)

(50)

(s1)

(52)

(s3)
(54)

(55)
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I = F-alk*1Q M Y (56)

The new symbols introduced in these expressions ars

bd = Md Nc - ‘.I(!N(! (57)
bﬁ = b.'pr - Mﬁl\’}9 (58)
' [0 = [y©@ = 12N, @ONz©@ - [7(O/k12Ny(0) Ny (0) 59)

V& = b Y@ (@ - 1Hy® = LINgW b, + {7 @/kYy ®) Hy@N,B) Ng(0)

= (O =132 7 () My (0) Ny () N 5 (0)) (60)
X@® = 52O {y@ - 1}y W EZNB b, + (¥ ©@/k}2{y®) - 1} ¥, (0) N B) N, (0)
“{r@ -1 {y®B) -1} M, 0 N k)N, (0] (61)
g Y@ = 52 [y @y @ -1hy BEZN Wb + (Y O/kyB) -1}l O N, BN, (0)
y = (7@ =11 {y (%) -1} M4 (©) N4 ) N, (0)] 62)
ZW = b YOO - THY B - DN by + Y @/k) () Mg (O) N g B) N (0

@ 1Py B M O N, BN ()] . (63)

-

The quantities by and b 8 will, in general, be functions of &, but may be shown from the differential Eqs.
(19) and (20) to be independent of z. Since b, and b g ore the Wronskians of pairs of linearly independent
functions, they cannot vanish. Thus the coefflclentn A, C and E are finite for all finite valuea of k,
while B, D, G and H have poles at the zeros of (k) and F and / have poles at the zeros of N (0).

4. POINT SOURCE SOLUTION AS A SUM OF NORMAL MODE SOLUTIONS

We now integrate Eqs. (21), (22) and (23) with respect to k from zero to infinity and evaluate the inte-
grals in the form of sums of residues at the poles of the integrands by applying Lamb’s® transformation of

il

TTUNNE - 5w YT OMMWIAL. et v e - = TR LY T Y g m— s —
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the path of integration in the complex k-plane. To simplify the resulting expret‘tsions the terms in

nl, (kr)/r, which become small at large values of r, will be dropped. The displacements then become

r

u, = mi cosnf X kR [d 02 (k r)/dr]) [df/di] [Nﬁ (P, Y (k) + S Z(k)}

NP, W) + S, X (k)] (64)

u, = micos n 0 kIVHD (e ) /AR RIN P, Y k) + S, 2 (k)
* N @AP W)+ S X (k)N (65)
= i i 'mL (g H@ (k! r)/dr) (d N O)/d k] 3L, N NN 4(0) , (66
g n;sxnn@%;km (d H! (k! ry/dr] N,B(O)/dk]k": ﬁ(z)Qn /3( )/ ﬁ() (66)

where the & ’s are the values of &k at which f(k) = 0 and the k": 's are the values of & at which
Ng(0)= 0. At & =k, the functions ¥, X, Y and Z reduce to

Wkyy = [y©@ - UIyO {y®)y - 1IN0 -y ®B){y© - 1}/\'(a(h) Nﬁ(o)/ﬁ}a(o)] (67)
XG,) = O -1 yOy®EINE - (7@ - 1HY®) = DN, BN ON, @] (68)
Yk,) = @ - 1 y@y®EZNE = {70 = 1My ®) - 1IN, BN @/, @] (g5
ZG,) = [y 1] K2y @y ®) = 1INE = yB) {y0) = 1IN W) Ny /N, @] . (70)

An expression for the velocity potential in a fluid medium in a form analogousto Eqs. (64), (65) and (66)
for the case of a radially symmetrical point source (n = 0), has been derived in a previous paper.? It was
shown that at sufficiently high frequencies the interference pattern produced by the superposition of a large
number of normal modes leads to a distribution of amplitudes which is the same as that which would be
computed on the basis of ray geometry. In particular, if the variation of velocity with z is such as to
produce a geometrical shadow zone, the normal modes interfere destructively in the shadow zone. At finite
frequencies, the destructive interference is not quite complete and there is a residual disturbance that is
given by expressions formally similar to those occurring in the optical theories of diffraction at barriers and
caustics. It does not appear that any new conclusions of much significance will emerge from carrying
thrcugh the same analysis in the case uuder consideration. What we do wish to examine further is whether
or not the asymptotic solutions of Eqs. (19) and (20) can be used to draw any conclusions concerning the
dispersion characteristics of the normal modes of low order, that make the principal contribution to the low

frequency surface wave phases on seismograms.

LS



14

VELOCITY

a(2)

VELOCITY

Q
T
1
L

OfF-cccrrcec e
obecae o

~
Py S,
oY S

Fig. 1. Velocity feaction for Case 1. Fig. 2. Velocity function for Case 1l

Case 1. Velocity increases monotonically with z as shown in Fig. 1

and a is the value of s at which «

(82).

1
c<ae, N, -~ (2/'nlua)7 exp [ ~ky (z) + 5mi/12]

z2>a

1
e> ao} Ne= (2/17&30)7 exp [ ~ky () + Smi/12]

c>a 1
0} N“ ~ 9 (Z/ﬂkla)-r exp (27i/3) cos [k %, () - /4]

g€a

y,® = JV1-[e/a@]¥ dz  2>a

%, (s) }v/ (c/a(s)]2® =1 dz z2<a

(78)

(79)

(80)

(81)

(82)

= e¢. For ¢ < a, a may be set equal to sero in Eqs. (8]) and
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Case II. Velocity has s single minimum, @, , at z =z, as shown in Fig. 2
1
e<a, Ne- @/mks)® exp [-ky, ,() + 5mi/12] (83)
al <¢e<a 1l )
Ny~ (2/11)::(‘,‘)2 exp [-kya.z(z) + 57i/12) (84)
23>0
2
a, <ec<a ..i.
! Ny~ 2@/mks ) exp (27i/3) cos [kx, ,(z)-7/4) (85)
a, <z<a,

1
e “o} Ny = 2@/mks )T exp lkyy (@) + 57i/12] cos [kx, ,(a)] (86)

g < a,
c> a - -i- ,
i >a Ny = @/mks)* exp [ -ky, , () *+ 57i/12] (87)
2
4 ao _;. .
Na -2 &/ﬂha) axp (27i/3) cos ['l‘xa.2 (z) - n/4) (88)
2 <a
2
where
Ya@® = JV1-Tc/a@)]?ds (89)
%2
) M1
: Yo 18 = S ATt d: (90)
i '
l ®2
;§ a,@ = VTe/a@I% ~1ds (o1
and for ¢ < a, wetake a, = a, =z,
|\ To the same order of approximation the derivative N, is given by
k Case |
. 1
c<a Ny = Qks /mP exp [ ~ky,(2) - mif12] (92)
¢ c>a . 1
°} N,— (2 lua/'n)T exp [ —ky,(2) - mif12] (93)
t>a
: c”> . 1
°} Ny 2(2 kca/‘")r exp (2 7i/3) sin [kx (s) -7/4] . (94)




Case II
. 1
c<a No = @hay/mT exp [ -ky, , @) =mi /12] (95)
<e < . 1
heth Ny—= ks /) exp [ - kyg,a @) - 7i/12] (6)
z >a,
. 1
4 <e<a, N,—~ 20 hcfni’ exp (2 7i/3)sin [""a.z (z) —n/4) (97)
e, <z < a,
. L
4 e Ny=2Qks/ exp Lky, () -7i/12] cos [kx, ,(a))] (98
z < e
. 1
°©? “°} Ny = @ksy/mT exp [-ky, ()~ mi/12) (99)
2> a,
. 1
¢ ao} Na -2(2 lna/ﬂ)z exp (2 7i/3) sin U"a.z(’) -n/4) . (100)
z < a,

The functions N 8 and N g are given by the same expressions with 3 substituted for a. Correspond-
ing values of z at which 5 = c are denoted by b. The characteristic Eq. (72) for the normal modes of

Rayleigh type then takes the following forms.

Case 1

e<B  [y@-11% - [y@)?VI1 -(/a)? [1-(/8)*] =0 (101)

By <e<a ly@-112 + [@)2 V1= (c/a,)*] [(c/B)? - 1] tan [k x5(0)-7/4) =0 (102)

a,<c  [y@-112- ly@*vVTe/a ) -1Tlc/B) -1]
tan [k x,(0) ~7/4]) tan [k, x4(0)~7/4] =0 . (103)

Case I

°<’81

B <e<By<a,

By<e<a

y@-11%- ly@)2 VT =G/ @ T -G/8)% =0 (100

{[y(o)-n'- @] /1= (/)] [1-(c/ﬁo)'j}co. [k, x4, ,6)] =0 (105

@ -11* + [y@1* V1= (c/a )? ] (/B - 1]

tan [k %, .0 -7/8] =0 (106)
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@ <c<a { (y@-112 + [y@]12V 1~ (e/a)’] [(/B)* - 1]

c>a

m %3

tan [".’p.,«’)'"/‘]} cos [k, %, .6)] =0 (100)

[y -112 - (@12 VI(c/a)? - 1] [(c/B)? - 1] tan [k, x, ,(0) - /4]

tan [k,xp,,(o) -m/4] =0 . (108)

Equations (101), (104), and the first factor of Eq.(105) are the same as the equation for the velocity of

Rayleigh waves on a homogeneous medium having velocities @ = a  and S = ,30. This equation deter-

mines a single real value of the phase velocity, c, for all values of k. Actually, of course, this value of

¢ is merely the asymptote approached by the Rayleigh wave phase velocity at high frequencies, so that,

the present approximation is inadequate to deal with the dispersion of the mode of lowest order.

The characteristic Eq. (73) for the normal modes of SH type has the following asymptotic forms.

Case ]

Case Il

c<,3°
c>ﬁ°

c</3‘

No roots exist
sin (k] 2g(0)~7/8) =0
ko5g(0) = 7m(m +1/4) m =0,1,23,... (109)

No roois exist

,31<c<,3 cos [lc'xﬁ.z(b )] =o

By<e

lxg b)) ML) m=0,1,28,0 (110)

sin [k'zﬂ ,0-7/4) =0
kp%g 40 = 7(m+1/4) m =0,1,28,... an)

6. APPLICATION OF APPROXIMATE THEORY TO A LAYERED MEDIUM

The development of the approximate expressions for the functions N and N 8 involves the assumption

that the velocitios and their firet derivatives are coatinuous functions of z so that, in general, the present
theory is not applicable to s medium made up of discrete layers. If the discoatinuities in the velocities sad

1

B il
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COMPARISON OF DISPERSION CURVES
FOR RAYLEIGH MODES iN A TWO LAYERED MEDIUM
SOLID CURVES = EXACT THEORY
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allﬁ' = 1,81 Bz/ﬁ' = 1.37
a,/B = 2.44 PP, = 11
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Fig. 3. Comperison of dispersion curvee for Rayleigh Modes in & two layered medium.

the density are amall, however, the amplitudes of the waves reflected from the boundaries will be small ex-
’ cept for angles of incidence greater than the critical angle. If we can ignore the boundary reflections at
angles less than the critical angle, there is no fundamental distinction between the cases of continuous and
Y- discontinuous velocity variation.

l ] In the case of monotonically increasing velocity, the quantities %, (0) and » p(O) become for discrete
layers, each of constant velocity,

a‘<c
; %0 = 3 d,V(c/a)F -1 (112)
! i=)
ﬁ‘<¢
50 =3 4 V7B (113)
=1
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COMPARISON OF DISPERSION CURVES
FOR SH MODES IN A TWO LAYERED MEDIUM

SOLID CURVES = EXACT THEORY

| DASHED CURVES = APPROXIMATE THEORY
B,/B, = 137

02/;G!= 244 pz/pl = LIl

—l i

123

a'/B' = 1.81

1.0

100

Fig. 4. Comparison of dispersion curves for SH modes in a two layered medium.

where d; is the thickness of the ith layer and the summations are extended over all layers for which @,

or 3, respectively are less than c. If the velocity of successive layers decreases and then increases,

we find the same Eqs. (112) and (113) for xav’z(f)) and xg 2(0),
®hen ¢ < a

when ¢ > o and ¢ > £ respectively.

o oF ¢ < /B, the summations extend only over the layers for which @, < ¢ o /3 <ec.

Phase velocity dispersion curves have been computed according to the present approximate theory and
according to the exact theory for a two-layered medium (the second being semi-infinite) having the following

properties:

o, /B, 1.81 B, /B,

o, /B 2.4 L)

1.37

111,

The results are plotted in dimensionless form, ¢:/ﬂl versus kd, for the first seven normal modes of

Rayleigh type in Fig. 3, and for the normal modes of SH type in Fig. 4. The exact and approximate curves
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Fig. 5. Comparison of dispersion curves for SH modes in s three layered medium, Case I.

are campared for the SH modes in two 3-layered media in Figs. 5 and 6. Those shown in Fig. 5 are for
the case

BB = 119 p/A 100 d/d, = 15 ,

B, /B, = 131 A/R = L1
and those shown in Fig. 6 illustrate the effect of a low velocity second layer

By/B = 88 A/R
B/B = 131 R/R
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Fig. 6. Comparison of dispersion curves for SH modes in a three layered medium, Case II.

From these comparisons, it appears that the approximate theory gives a fairly good representation of the
phase velocity dispersion curves for the normal modes of order higher than the 5th or 6th, except in the
immediate neighborhood of the Jow frequency cut offs. For the lower modes the approximation is not good
enough for quantitative purposes. In particular, in studies of seismic surface waves one will usually want
to compare an observed variation of group velocity, U = d(ck)/dk, with period, with the theoretical group
velocity curves for the modes of order m = O or 1 computed for some assumed velocity stratification. It
is quite evident that the approximate curves for the cases illustrated here would not be adequate for this
purpose.

It is believed, however, that the approximate theory will be found to have some value for the purpose of
qualitative estimation even for the modes of lowest order. For example, in the case shown in Fig. 3, we
know that the-correct curve for m = Q should approach the Rayleigh velocity of the semi-infinite layer as
k approaches zero, and from the asymptotic form of the exact theory for small valtes of &k, we have un

expression from which the bebavior of this curve for kd << 1 can be computed without difficulty. We also

- — o —



know that for kd > 10 the phase velocity of this mode will be very close to the Rayleigh velocity of the
upper layer. With these limiting values {ixed and knowing that the approximate curve approaches the

cotrect curve for some intermediate value of ¢, the general form of the curve can be estimated within a
moderately broad band of uncertainty. In the case under consideration, we could have inferred by such a
process that the minimum group velocity would probably occur at some value of kd between 2 and 4. The
actual minimum, obtained by a graphical method from the plotted “‘exact’’ curve, is at kd = 3.05. In more
complex cases, where the labor of computing the dispersion curves by the exact theory may become prohibi-
tive, even so loose an estimate as this may be useful in limiting the range of possible structural models that
might be used to explain a givea set of cbaerved dispersion data.
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